
Sharp Gårding Inequality
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The purpose of this note is to prove a version of the Sharp Gårding Inequality. We will
follow [1, Exercise 4.9] for the relevant parts.

Theorem 0.1 (Sharp Gårding Inequality). Let M be a manifold1, and suppose A ∈ Ψs(M)
is a properly supported pseudodifferential operator with σ(A) ≥ 0. Then there exists B ∈
Ψs−1(M) such that

〈Au, u〉 ≥ −〈Bu, u〉

for all u ∈ C∞c (M). Also, for every compact set K ⊆ M , there exists C = C(K) such that
if suppu ∈ K then

〈Au, u〉 ≥ −C ‖u‖2Hs/2−1/2 (K).

Here the norm is interpreted as any such inducing the topology on H
m−1/2
loc (M) ∩ C∞c (K).

Furthermore, if A ∈ Ψs
cl(M), then B can be chosen to be in Ψs−1

cl (M).

Remark 0.2. There is a version of the inequality of vector bundles, too. The proof remains
essentially unchanged.

1. Overview of the Proof

We will first assume thatM = X is an open subset of Rn. The idea will be to find a properly
supported P ∈ Ψs(X) with σ(P ) = σ(A), but 〈Pu, u〉 ≥ 0. Given this P , we may prove the
theorem. Indeed, set B = P − A. Then P − A ∈ Ψs−1(X), and

〈Au, u〉 = 〈Pu, u〉+ 〈(A− P )u, u〉 ≥ −〈Bu, u〉.

This proves the first assertion in the case M = X. We will later push this forward to a
manifold using a partition of unity. Assume this has been done for now.

For the second conclusion, first assume that s = 1. Then the conclusion follows from
L2 boundedness of B, as an operator on C∞c (M). In general, let Λ ∈ Ψs/2−1/2(M) be
any properly supported formally self-adjoint, positive, elliptic operator, and let Υ be any
parametrix (to find such an elliptic operator, we may simply take any properly supported

1For simplicity of notation, we assume that M comes equipped with a canonical strictly positive density,
such as M is oriented and Riemannian. This is merely an assumption for purposes of notation and allows
us to conflate smooth functions with smooth densities.
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elliptic operator of the correct order, and multiply by its adjoint). Set A′ = ΥAΥ, so that
A = ΛAΛ +K, where K is smoothing. Then since K is smoothing,

〈Au, u〉 = 〈A′Λu,Λ〉 − C ‖u‖2Hs/2−1/2(K) .

Since A′ ∈ Ψ1(M), we may apply the previous result to conclude that

〈Au, u〉 ≥ −C
(
‖Λu‖2H0(K) − ‖u‖

2
Hs/2−1/2(K)

)
.

We then use boundedness of Λ to conclude.

2. Constructing P

Now, returning to the case M = X, we begin to find the desired P , as described above.

Lemma 2.1. There exists χ(ζ, x) ∈ C∞(X ×X) such that:

(i) 0 ≤ χ ≤ 1;

(ii) for each x fixed, there is a neigbhourhood U of ∆ = {(x, x)} such that for (y, z) ∈ U
χ(y, z) = 1;

(iii) for each ζ fixed, χ(ζ, ·) ∈ C∞c (X). Moreover suppχ ⊆ {|ζ − x| ≤ 1}.

This proof is somewhat technical and the proof is not really related to the proof of
Theorem 0.1. We will thus save it for the appendix. Define f ∈ C∞(X ×Rn ×X) by

f(ζ, ξ, x) := c1/2|ξ|n/4 exp(−1/2|ξ||x− ζ|2 + i(x− ζ)ξ),

where c > 0 will be chosen later.
Also define Π ∈ C∞(X ×Rn ×X ×X) by

Π(ζ, ξ, x, y) = χ(ζ, x)χ(ζ, y)f(ζ, ξ, x)f(ζ, ξ, y).

Lemma 2.2. For fixed ζ, ξ, Π is compactly supported and 〈Πu, u〉 ≥ 0 for u ∈ L2(X) and
suppu compact. Furthermore, for fixed ξ and considered as a function of ζ, 〈Π(ζ)u, u〉
is compactly supported, independently of ξ, and is bounded above by C|ξ|n/4, where C is
independent of ζ, ξ.

Proof. The first two assertions are clear. The former by definition of χ, and the latter
because χ is real and so commuting complex conjugation with the integral yields

〈Πu, u〉 = c|ξ|n/2
∣∣∣∣∫ χ(ζ, x)f(ζ, ξ, x)u(x) dx

∣∣∣∣2 .
Since χ(ζ, x) = 0 if |ζ−x| > 1 the quantity vanishes. Thus 〈Π(ζ)u, u〉 is supported only in a
neigbhourhood of suppu. Furthermore, c ‖u‖2L2(X) |ξ|n/2 provides a uniform upper bound.
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Given A ∈ Ψs(X) with symbol a, we introduce the function

I(x, y, ξ) = cϕ(ξ)|ξ|n/2
∫

exp(−1/2|ξ|(|x− ζ|2 + |y − ζ|2))a(ζ, ξ)χ(ζ, x)χ(ζ, y) dζ,

where c is chosen to be the same c as in the definition of f , and ϕ is some smooth cutoff of
|ξ| ≥ 1/2 with √ϕ smooth.

Proposition 2.3. I(x, y, ξ) is a symbol in the class Ss1,1/2(X ×X ×Rn) of symbols of order
s, which when hit with derivatives in X pick up a growth factor of 1/2, and when hit with
derivatives in Rn pick up a decay factor of 1. Moreover, the set

S := {(x, y) : ∃ξ, (x, y, ξ) ∈ supp I}

is a proper subset of X ×X.

Proof. We first show that I is a well-defined smooth function. Indeed, by definition of χ,
the integral is taken only over those ζ with |ζ − x|, |ζ − y| ≤ 1, so the integral is only over
a compact set of ζ. Also, ζ ∈ X, since for suppχ ⊆ X ×X.

If there is to be any ζ satisfying the above bounds, then it must be true that |x− y| ≤ 2.
Thus,

S ⊆ {|x− y| ≤ 2}

is proper.
Deriving the symbol estimates is trickier. Completing the square, we see that

((x− ζ)2 + (y − ζ)2)) = 2|ζ − (x+ y)/2|2 + 1/2|x− y|2.

Set t = (x+ y)/2 and s = (x− y)/2. Also set Ĩ(t, s, ξ) = I(x, y, ξ). Then, changing variables
we see that

Ĩ(t, s, ξ) = cϕ(ξ)e−|ξ||s|
2|ξ|n/2

∫
exp(−|ξ|ζ2)a(ζ + t, ξ)χ(ζ + t, t+ s)χ(ζ + t, t− s) dζ.

The ϕ factor is present only to make I smooth and does not affect symbol estimates, which
are for large ξ anyway. Thus, Ĩ has effectively two factors for which we will derive symbols
estimates. Showing symbol estimate for Ĩ is equivalent to showing them for I, since x, y are
in a compact set iff t, s are.

First, we show that
√
ϕ(ξ)e−|ξ||s|

2 ∈ S0
1,1/2(X × Rn) (we will ignore ϕ in deriving the

estimates since its presence just makes everything smooth, and we are only interesting in ξ
large estimates). Hitting with k ξ-derivatives yields terms bounded above by

|s|2ke−|ξ||s|2 .

Considering |s|2|ξ| as one unit, the estimate

|s|2ke−|ξ||s|2 ≤ |ξ|−k
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is easy to derive.
If, in addition, we hit it with j s-derivatives, we obtain bounds of the form of finite sums

of
|s|2k−i|s|j−i−`|ξ|(j−i−`)/2|ξ|(j−i)/2e−|ξ||s|2 ,

where i ≤ j, an ` ≤ j − i. The first factor is if the derivative lands on the s factors in the
above. If the derivative hits e−|ξ|s2 = e−(

√
|ξ||s|)2 , then instead we obtain p(

√
|ξ|s)e−|ξ||s|2 ,

where p is a polynomial of degree at most the number of derivatives. We also obtain more
factors of |ξ| because of chain rule. This is the second factor. We seek a bound of |ξ|−k+j/2
for large |ξ| if we restrict s to a compact set. This is equivalent to a bound of the form

|ξ|(j−`)/2−i+k|s|2k−2i−`+je−|ξ||s|2 . 1

for |ξ| large. However, this is just

(−|ξ||s|2)(j−`)/2−i+ke−|ξ||s|2

which is certainly uniformly bounded for |ξ| large and s is a compact set.
Set

J(t, s, ξ) =
√
ϕ|ξ|n/2

∫
exp(−|ξ|ζ2)a(ζ + t, ξ)χ(ζ + t, t+ s)χ(ζ + t, t− s) dζ.

If we can show that J(t, s, ξ) ∈ Ss1,0, then we will have proved the lemma by multiplying by
e−|ξ|s

2 and using the symbol estimates we just derived (since S0
1,1/2 · Ss1,0 ⊆ Ss1,1/2).

Observe that the integral in the definition of J runs only over those ζ for which |ζ±s| ≤ 1.
Thus if s, t lie in a compact set, so do ζ. It is thus clear that we have Ss1,0 symbol estimates
for

b(ζ, t, s, ξ) := a(ζ + t, ξ)χ(ζ + t, t+ s)χ(ζ + t, t− s)

for s, t lying in a comapct set, which are uniform in ζ.
Taking s, t derivatives in J only hits b. All the work will therefore be in showing bounds

for ξ derivatives. Since we have symbol estimates for b, we might as well assume for simplicitly
that we are taking no s, t- derivatives. As above, we will ignore the presence of ϕ, since we
are interesting in ξ large, only.

Taking a ξ -erivative, it can land in three places. So if we take k ξ-derivatives, then we
obtain bounds by finite sums of the form

|ξ|n/2−k1
∫
ζ2k2e−|ξ|ζ

2|ξ|s−k3 dζ

where k = k1 + k2 + k3. Changing variables in ζ and integrating we obtain the bound

|ξ|−k1|ξ|−k2|ξ|s−k3 = |ξ|s−k,

which is of the form we want.
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Now, define P ∈ Ψs
1,1/2(X) to have symbol I(x, y, ξ); more specifically we set P to be the

operator with kernel

P (x, y) = (2π)−n/2
∫ ∫

ei(x−y)ξI(x, y, ξ) dξ,

interepreted, as always, as an oscillatory integral.

Proposition 2.4. If P is defined as above and u ∈ C∞c (X), then 〈Pu, u〉 ≥ 0.

Proof. Let 0 ≤ ψ ∈ S(Rn) be such that ψ(0) = 1. Then we know that, for u ∈ C∞c (X),

(Pu)(x) = lim
ε→0

(2π)−n/2
∫ ∫

ei(x−y)ξψ(εξ)I(x, y, ξ) dξ,

essentially by approximating the symbol I(x, y, ξ) with ones of order S−∞. On the other
hand, one sees that this expression is just

(2π)−n/2
∫ ∫ ∫

a(ζ, ξ)ψ(εξ)Π(ζ, ξ, x, y)u(y) dζdξdy.

Thus,

〈Pu, u〉 = lim
ε→0

(2π)−n/2
∫ ∫ ∫ ∫

a(ζ, ξ)ψ(εξ)Π(ζ, ξ, x, y)u(y)u(x) dζdξdydx.

If we could exchange the order of integration so that the dydx comes before dζdξ then the
integral would be ∫ ∫

a(ζ, ξ)ψ(εξ)〈〈Π(x, ζ, ·, ·)u, u〉dζdξ,

which by Lemma 2.2 is a non-negative quantity provided it is integrable. Indeed, we may
use Lemma 2.2 to bound this integral in absolute value by∫ ∫

a(ζ, ξ)ψ(εξ)|ξ|n/2 dζdξ,

where the ζ range over a compact set. To show we may exchange the order of integration, we
appeal to Fubini’s theorem. Showing that the hypotheses of Fubini’s theorem are satisfied is
essentially the argument we just used, except we take the absolute values inside the integral
defining 〈Πu, u〉, too.

3. Finding σ(P )

We have defined P , and shown that it is positive, but we need to show that in fact P ∈
Ψs(X) = Ψs

1,0(X) and σ(P ) = σ(A) (if we choose c correctly). By Proposition 2.3 we know
that P is properly supported, so σ(P ) makes sense. Also,

P = (2π)−n/2
∫
ei(x−y)ξp(x, ξ) dξ,
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where
p(x, ξ) ∼

∑
Dα
y ∂

α
ξ I(x, y, ξ)|y=x.

The asymptotic sum is understood by stating that the remainder after stopping at |α| < k

should be a symbol in Ss−k/21,1/2 (X,Rn).

Lemma 3.1. Set pα(x, ξ) = Dα
y ∂

α
ξ I(x, y, ξ)|y=x. Then pα ∈ Ss−|α|1,0 (X,Rn).

Proof. We already know that pα ∈ Ss−|α|/21,1/2 (X,Rn). The goal is to improve this. We return
to examining Ĩ in the proof of Proposition 2.3. Then

pα(x, ξ) = (1/2)|α|(Ds +Dt)
α∂αξ Ĩ(x, 0, ξ).

Aruging as in the proof of Proposition 2.3 (and using the notation therein), there is no ques-
tion that the factors coming from J(t, s, ξ) are not harmful; the problem is that

√
ϕ(ξ)e−|ξ|s

2 ∈
S0
1,1/2(X,R

n). However, in the present case we are setting s = 0. In particular, arguing as in
the proof of Proposition 2.3, when taking derivatives in ξ and s, we obtain terms bounded
by sums of

|s|2|α|−i|s||α|−i−`|ξ|(|α|−i−`)/2|ξ|(|α|−i)/2e−|ξ|s2 .
However, in the present case s = 0, so the only terms contributing are those with i+ ` = |α|,
which means in particular that 2|α|− i > 0 so no terms contribute, and the derivative is just
0. Of course, this is except the zeroth derivative, which just contributes a factor of 1.

In all, we thus have that

pα(x, ξ) = (1/2)|α|(Ds +Dt)
α∂αξ c
√
ϕ(ξ)J(x, 0, ξ) ∈ S|α|1,0(X ×Rn).

From this Lemma we deduce that for all k

p(x, ξ) ∈ Ss1,0 + S
s−k/2
1,1/2 .

In particular, for all α, β, k.

∂αx∂
β
ξ p(x, ξ) ∈ S

s−|β|
1,0 + S

s−k/2−|β|+|α|/2
1/2,0 .

So, choosing k = |α| we derive the correct symbol estimates to ensure that

Lemma 3.2. p ∈ Sm1,0(X ×Rn).

To show that σ(P ) = σ(A), we need only show that p0(x, ξ) − a(x, ξ) ∈ Ss−1(X ×Rn),
since then P − A ∈ Ψs−1(X).2

We will use a version of the method of steepest descent. We recall the basic statement
here.

2Really this is what we are trying to prove, not the assertion about the symbols. Of course these are
completely equivalent.
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Theorem 3.3 (Method of Steepest Descent). Suppose u ∈ C∞c (Rn). Then, for λ ≥ 1

λn/2
∫
e−λ/2|x|

2

u(ζ) dζ =
k−1∑
j=0

(2π)n/2

2jj!
λ−j(∆j)u(0) + Sk.

where
|Sk| ≤ ckλ

−k
∑
|α|=2k

sup |∂αu(ζ)|.

Here, ck are constants not depending on u.

A version of this theorem holds true with parameter and if we let u have λ dependence,
and take derivatives in λ. This is the version we will use.

Theorem 3.4 (Method of Steepest Descent with Parameter). Suppose v ∈ C∞(Rn ×Rn),
and for ξ fixed, v(·, ξ) ∈ C∞c (Rn). Then, for |ξ| ≥ 1, if k ≥ |α|

∂αξ

(
|ξ|n/2

∫
e−|ξ||ζ|

2

v(ζ, ξ) dζ

)
=

k−1∑
j=0

(2π)n/2

2jj!
(∂αξ ∆j

ζ)(|ξ|
−jv(0, ξ)) + Sk,α(ξ),

where
|Sk,α(ξ)| ≤ ck,α|ξ|−k−|α|

∑
|β|=2k

sup
ζ
|∂βζ v(ζ, ξ)|.

We will prove Theorem 3.4 in the Appendix.
We will use Theorem 3.4 to prove

Proposition 3.5. p0 − a ∈ Ss−1(X ×Rn).

Proof. Recall that we have that

p0(x, ξ) = c
√
ϕ(ξ)J(x, 0, ξ) = c|ξ|n/2

∫
exp(−|ξ|ζ2)a(ζ + t, ξ)ϕ(ξ)χ(ζ + x, x)2 dζ.

Fix x, β and set
v(ζ, ξ) = ∂αx (a(ζ + x, ξ)ϕ(ξ)χ(ζ + x, x)2).

Observe that χ(ζ + x, x) = 1 near ζ = 0 and so also all higher derivatives vanish near ζ = 0.
Thus,

∆j
ζv(0, ξ) = c∆j

x∂
α
xa(x, ξ)ϕ(ξ).

Ignoring ϕ in the estimates since we only care about large ξ, we have that, choosing c =
(2π)−n/2,

∂βξ ∂
α
x p0(x, ξ) = ∂βξ ∂

α
xa(x, ξ) +

|β|−1∑
j=1

1

2jj!
(∂βξ ∆j

x∂
α
x )(a(x, ξ)|ξ|−j) + Sk,β(ξ),
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where
|S|β|,β| ≤ c|β|,β|ξ|−2|β|

∑
|γ|=2|β|

sup
ζ
|∂γζ ∂

α
xa(ζ + x, ξ)χ(ζ + x, x)2|.

The error terms look complicated; however, we need only show that for x is a compact set
they are all O(|ξ|s−|β|−1). This is certainly true for the middle error terms. It is also true of
S|β|,β, since the x lying in a compact set implies the same of ζ.

4. Loose Ends

Now we deal with the loose ends.

Proposition 4.1. A ∈ Ψs
cl(X) then the B in Theorem 0.1 is in Ψs−1

cl (X).

Proof. It suffices to show that P ∈ Ψs
cl. Using these estimates, it is not hard (although

quite complicated) to prove this We will sketch how to do this. First suppose a(x, ξ) is
homogeneous for large ξ. The above estimates show that p0 ∈ Sscl. We observe from the
proof of Lemma 3.1 that a formula for p1 is

p1(x, ξ) ∼ (Ds +Dt)∂ξc
√
ϕJ(x, 0, ξ).

One brings the derivatives in, and uses the method of steepest descent, observing that any
time a derivative touches χ we can safely ignore it because such factors vanish at ζ = 0
(really one needs to keep track of them since they will appear in the error terms for Sk,α,
but they just appear as uniformly bounded quantities here). The same reasoning holds for
pk. So the degree s homogeneous part of p is p0. The degree s− 1 part is p1 and the second
term in the expansion of p0 via the method of steepest descent. The degree s− 2 part is p2
and the second term in the expansion of p1 and the third term in the expansion of p0, etc.

Now if a is not homogeneous, we can write it as the sum of homogeneous symbols and
an error term, say

a = a0 + a1 + · · ·+ ak + e.

Now, each term begets its own p via the process we carried out above. So we may write

p = p0 + p1 + · · ·+ pk + p(e).

Each pi is homogeneous by the above work, and the error symbol p(e) is a symbol of lower
order. Thus collecting terms of the same homogeneity proves that p is a classical symbol.

The final thing to do is transfer this result to a manifold, M . Let A ∈ Ψs(M). Write A
for its kernel, too. Let ϕi be a partition of unity subordinate to charts κi : Ui →M . Define
the kernel Ai(x, y) = ϕi(x)A(x, y)ϕi(y). Then Ai (after identifying Ui with its image under
κi) is a pseudodifferential operator on Ui in Rn. Set R = A −

∑
Ai. Then R is smoothing

since supp(R) is disjoint from a neigbhourhood of the diagonal. Indeed,
∑
ϕi(x)ϕi(y) is a

smooth cutoff of the diagonal. Let Bi be pseudodifferential operators associated to Ai by
the theorem for the case of open subsetsof Rn, i.e. 〈Aiv, v〉 ≥ 〈Biv, v〉 if v ∈ C∞c (Ui), and
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B ∈ Ψs−1(Ui). Observe that if ψi is identically 1 on suppϕi with suppψi ⊆ Ui. Then if
u ∈ C∞c (M),

〈Aiu, u〉 = 〈Aiψiu, ψiu〉.

Since ψiu ∈ C∞c (Ui), we continue the above:

≥ 〈Biψiu, ψiu〉.

Set B′(x, y) =
∑
ψi(x)Bi(x, y)ψi(y). Then B′ ∈ Ψs−1(M), since is is locally a pseudodif-

ferential operator and is pseudolocal. In other words, B′ is conormal with respect to the
diagonal. Observe that

〈B′u, u〉 =
∑∫ ∫

Bi(x, y)ψi(x)ψi(y)u(x)u(y) =
∑
〈Biψiu, ψiu〉.

Thus

〈Au, u〉 = 〈Ru, u〉+
∑
〈Aiψiu, ψiu〉 ≥ 〈Ru, u〉+

∑
Biψiu, ψiu〉 = 〈(R +B′)u, u〉.

Set B = R +B′ ∈ Ψs−1(M) to complete the proof.

A. Appendex: Miscellaneous Proofs

We prove Lemma 2.1 here.

Proof of Lemma 2.1. Define a neigbhourhood U of ∆ by

U = {(ζ, x) ∈ X ×X : |ζ − x| < 1, min(d(ζ, ∂X), d(x, ∂X)) > 2|x− ζ|}.

Here d denotes the distance between a point and a set. For each (ζ, x) 6∈ ∆, let 0 < ε be small
enough so that there is a neigbhourhoodWζ,x of ∆ such that Bε((ζ, x))∩Wζ,x = ∅. Consider
the cover consisting of U and these balls. Take a locally finite refinement of this partition,
consists of sets Uα and Vβ, where Vβ are contained in the balls, and Uα are contaiend in U .
Now take a partition of unity {ϕα, ψβ} subordinate to this partition with the property that
suppϕα ⊆ Uα and ψβ ⊆ Vβ. Then let χ =

∑
ϕα. We verify the properties. First, we can

take ϕα, ψβ ≥ 0, and so
0 ≤ χ ≤

∑
ϕα +

∑
ψβ ≤ 1.

Next, if (x, x) ∈ ∆, a sufficiently small neighbourhood V intersects only finitely many
Vβ. Since each Vβ is contained in some Bε(ζ, x) disjoint from some Wζ,x, taking intersections
we can find a neigbhourhood W of ∆ for which each of these finitely many Vβ is disjoint
from W . In particular, (x, x) ∈ V ∩W is disjoint from all Vβ, since V is disjoint from all but
finitely many, and W is disjoint from these finitely many. In particular, on V ∩W , each ψβ
vanishes, and so

1 =
∑

ϕβ +
∑

ψβ =
∑

ϕβ = χ,
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and so χ = 1 on a neigbhourhood of (x, x). This shows (ii).
By assumption, suppχ ⊆

⋃
Uα ⊆ U . This immediately implies that suppχ ⊆ {|ζ − x| ≤

1}, and for fixed ζ,
suppχ ⊆ {x : |x− ζ| ≤ 1/2d(ζ, ∂X),

i.e. suppχ is compactly contained in a closed ball inside of X. This proves (iii).

Before proving Thereom 3.4, we will sketch a proof of the basic version, Theorem 3.3

Proof of Theorem 3.3. Taking the Fourier Transform we need to estimate

(2π)n/2λ−k/2
∫
e−|η|

2/(2λ)û(η) dη.

Now,

e−|η|
2/(2λ) =

k−1∑
j=0

(−1)j

j!

|η|2j

(2λ)j
+Rk(|η|2/(2λ)),

where |Rk(x)| ≤ 1
k!
|x|k. Thus, the quantity we need to estimate is

(2π)n/2
k−1∑
j=0

1

2jλj+n/2j!
|η|2jû(η) dη + (2π)n/2λ−n/2

∫
Rk(|η|2j/(2λ))u(η) dη.

Taking the Fourier transform and using that it converts |η|2 to the Laplace operator, the
first term is what we want. We estimate the error by

λ−n/2−k
∫
|η|2k|û(η)| ≤

∑
|α|=2k

λ−n/2−k
∥∥η2αû∥∥

L1 .

The estimate on the error follows by bounding this by the L∞ norm of the inverse Fourier
transform.

We now show how to modify this proof to prove Theorem 3.4

Proof of Theorem 3.4. The proof is similar to the version above. The main (i.e. non-error)
terms are derived in exactly the same way. For the error terms, we need to take derivatives
and see what happens. Let us write the remainder naively as

Rk(x) =
∞∑
j=k

(−1)jxj

j!
.

We wish to estimate ∂αξ Rk(|η|2/(2|ξ|)). The power series defining Rk(x) convergers. We check
that the same is true of the series defining Rk(|η|2/(2|ξ|)), together with all its ξ-derivatives,
which will allow us to take derivatives term-by-term:

∞∑
j=k

∂ξi
(−1)j|η|2j

2jj!|ξ|j
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= −|η|
2

2

ξi
|ξ|2

∞∑
j=(k−1)

(−1)j|η|2j

2jj!|ξ|j

= −|η|
2

2

ξi
|ξ|2

Rk−1(|η|2/(2|ξ|)).

One can show inductively that for all β∣∣∣∣∂βξ ξi
|ξ|2

∣∣∣∣ . |ξ|−1−|β|.
We will denote the class of functions (defined for |ξ| ≥ 1) which satisfy these estimates for `
instead of 1; i.e. T ` is the set of functions which decay like |ξ|` and whose derivatives decay
one order quicker per derivative. Clearly T `T `′ ⊆ T `+`

′ . Using these, one shows inductively
that taking ∂αξ termwise in Rk(|η|2/(2|ξ|)) leads to an expression which is a finite sum of
terms of the form

|η|2qT pRk−q(|η|2/(2|ξ|)),

where p + q = −|α| and T p indicates a term in T p. Thus we have showed that the series
converges together with its ξ-derivatives, so we may conclude that ∂αξ Rk(|η|2/(2|ξ|)) is the
same as taking the derivative termwise, and so is a finite sum of terms of the above form.

We know that

|Rk−q(|η|2/(2|ξ|))| .
|η|2(k−q)

|ξ|k−q
.

Thus we have a bound

|∂αξ Rk(|η|2/(2|ξ|))| .
|η|2(k−q)

|ξ|k−q
|η|2q|ξ|p =

|η|2k

|ξ|k+|α|
.

Using this estimate, one completes the proof as in the proof of Theoerem 3.3.
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